If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36u^2-27u-14=0
a = 36; b = -27; c = -14;
Δ = b2-4ac
Δ = -272-4·36·(-14)
Δ = 2745
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2745}=\sqrt{9*305}=\sqrt{9}*\sqrt{305}=3\sqrt{305}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-27)-3\sqrt{305}}{2*36}=\frac{27-3\sqrt{305}}{72} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-27)+3\sqrt{305}}{2*36}=\frac{27+3\sqrt{305}}{72} $
| 3(2n-7=9 | | 4y−-3=15 | | p+180=719 | | 8(2x+3)-6x=4x-9+6x | | 9(y-4)=-10(y+2+1/3) | | -8+2z=-2 | | y+23/2=9 | | 18+y=12y | | -9-x=-11-x | | 2/5-1/4x(x-8)=13/2 | | 1/2f-1=1/6f | | 86=g+65 | | -17=-5+4r | | 200=5*(2^n) | | s-4=31 | | 14y-10y=-64 | | (4x-1)=(8x+3) | | y=2(49) | | 4v-(7)/(5)=-(7v)/(5)-(5)/(3) | | x-(x/3)+(x/5)=26 | | 90+15x+8x-2=180 | | -2c=7=7 | | 6y-10=4y=6 | | -7-2n=1+6n | | 5y-1+y+41=8y+40-4y | | x(5x+3)=2x | | 47m=-39 | | 76=t+2 | | 2x+4x-1x-6=34 | | 3h−-9=18 | | 7/2x+x=x=7/4 | | 4(2x+5)-4x+1=39 |